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Abstract 

A procedure is described for the determination of the 
phases of waves scattered by a multilayer structure 
using interference between surface reflections and 
structure diffraction. The applicability of the method 
to Langmuir-Blodgett and metallic sputtered multi- 
layers is discussed. 

I. Introduction 

Multilayer structures now include a variety of 
artificially grown materials whose properties have 
applications in many fields of physics, chemistry or 
even biology. These structures can be obtained from 
a wide range of techniques which have been greatly 
improved in recent years so as to yield, at present, 
high-quality structures on the nanometre length scale. 
The most common techniques are evaporation and 
sputtering for metal/metal or metal/insulator multi- 
layers, molecular beam epitaxy (MBE) or metal- 
organic chemical vapour deposition (MOCVD) for 
semiconductor superlattices and Langmuir-Blodgett 
(LB) deposition for organic materials. The charac- 
teristic length for the period of these artificial struc- 
tures is in the range of atomic sizes and can be 
investigated using standard means such as X-ray 
diffraction. 

The growing interest in multilayers or thin films 
comes from the fact that such systems have properties 
mainly governed by their surfaces and interfaces. This 
is true for their scattering power, since it is well known 
that surfaces also produce a scattering of X-rays. 
Many techniques using this effect have appeared 
recently, such as, for example, reflectivity or grazing- 
incidence scattering. 

The purpose of this paper is to discuss the import- 
ance of surface effects in X-ray diffraction from multi- 
layers and to show how to take advantage of these 
effects to overcome the major problem of phase deter- 
mination. 
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In § 2, we shall attack the problem from a theoreti- 
cal point of view and exemplify the method with a 
calculation corresponding to an ideal case. § 3 will 
describe experimental results obtained on different 
types of samples. We have investigated samples of 
various origins in order to show the generality of 
our method and also its limitations. In a previous 
paper (Rieutord, Benattar, Bosio, Robin, Blot & de 
Kouchkovsky, 1987), we reported investigations on 
Langmuir-Blodgett multilayers and showed how X- 
ray diffraction results could be used to determine the 
deposition sequence of these layers. Here we shall 
adopt a more general point of view and show that 
very different multilayers (namely organic Langmuir- 
Blodgett and sputtered metallic multilayers) exhibit 
essentially the same diffraction features which can be 
used to solve phase problems. 

Both LB and sputtered multilayers have been exten- 
sively studied by many techniques including X-ray 
diffraction (Bisset & Iball, 1954; Rieutord, Benattar 
& Bosio, 1986; Nrvot, Pardo & Corno, 1988). 
However, most X-ray studies aimed to measure the 
mean period of the structure only; little attention was 
paid to the information available from other effects 
because the experiments were usually performed on 
standard 0-20 powder diffractometers that did not 
allow low-angle measurements and high resolutions. 
Our experimental results have been taken on a diffrac- 
tometer specially designed for surface studies. The 
experimental geometry is still a standard 0-20 reflec- 
tion, but we calibrate the diffracted intensity against 
the incident beam (thus having absolute reflectivities) 
and record a continuous diffraction pattern from zero 
angle to high angles of incidence over an extended 
range of intensities (typically eight orders of mag- 
nitude). 

2. Theory 

The problem of the relationship between the reflec- 
tivity of a system and the index profile is a particular 
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case of the general problem of structural determina- 
tion from X-ray diffraction patterns. 

The main difficulty in solving this problem comes 
from the fact that in standard X-ray scattering experi- 
ments the phase of the scattered radiation is lost. 
Some solutions to this so-called phase problem exist, 
however, and we can distinguish two main kinds of 
methods: 

Mathematical methods are based on the fact that 
a priori information is available about the electron 
density function in the crystal; for example, the fact 
that it is positive or that it has sharp maxima near 
the locations of atoms. These statements can be used 
to derive relations between the phases of diffracted 
waves that may afterwards allow one to unravel the 
structure (Karle, 1964). 

Physical methods, by contrast, attempt to use effects 
that reveal the phase in a direct manner. The common 
point for these physical methods is the use of a phase 
reference from which the phase of other scattered 
radiation is determined. This reference may be the 
radiation scattered by a heavy atom whose atomic 
scattering factor is known in the isomorphous replace- 
ment technique, or one of the diffracted beams in 
multiple diffraction experiments (Collela, 1974; Shen, 
1986; Shen & Collela, 1986). 

In this paper we follow the same ideas. One knows 
that multilayered films are bounded by two interfaces 
(air/film and film/substrate), and we shall demon- 
strate that the waves reflected from these interfaces 
(or from only one of them) may provide a reliable 
reference for phase identification. 

Concerning multilayers, it should be noted that a 
few methods have been developed that may allow 
one to obtain a profile structure, even in the absence 
of a direct phase determination (Spiller, 1988; Skita, 
Filipkowski, Garito & Blasie, 1986). 

2.1. Relationship between the structure and the 
reflectivity 

In reflectivity experiments, the incident beam 
strikes the surface at an angle 0 and the intensity is 
recorded at an equal angle 0. Thus the scattering 
vector q is perpendicular to the surface (Fig. 1) and 
these experiments give information about the average 
of the electron density along the normal (z axis). 

It should be pointed out that the lateral scale of 
the averaging of the electron density depends on the 
experimental conditions (coherence of the source, 
resolution etc.). This problem has already been con- 
sidered in relation to scattering by rough surfaces and 
will be examined in detail in a forthcoming paper. 
For our experimental set up, the coherence area a~ 
on which the projection is taken is typically a few 
ixm 2, which is smaller than the irradiated area. At an 
area scale larger than a~, the system will behave like 
an assembly of independent small systems. For in- 

stance, large-scale disorientations of small amplitude 
will not affect the reflectivity. They will possibly result 
in a broadening of the specular reflection, and this 
can be checked by measuring the width of the reflected 
beam compared with that of the direct beam (using 
a 20 scan at fixed 0). 

Within these approximations, the reflectivity may 
be calculated from the index profile along z, which 
is related to the electron density through the relation 

n ( z ) =  l - 8 ( z ) - i ~ ( z )  

where 

6( z) + ifl( z) = ( A z/27r)r~fN ( z) 

where f is the complex atomic scattering factor, A 
the wavelength, re the classical electron radius and 
N ( z )  the atomic density. If absorption is neglected 
as well as the angular dependence of the scattering 
factor f, we can write 

n(z)=l-S(z) 
and 

6(z) = (A 2/27r)rep~(z), 

where pe(z) is the electron density. 
The reflectivity can be calculated from the index 

profile using methods developed in optics (Abel,s, 
1950; Born & Wolf, 1980). 

These methods allow exact calculations of the 
reflectivity at any angle and are similar to an intensity 
calculation in the dynamical theory of X-rays. Simpler 
formalisms may be adopted, however, when one 
enters the range of application of kinematical theory, 
i.e. when multiple scattering is neglected (first Born 
approximation). Then the relation between reflec- 
tivity and electron density becomes a mere Fourier 
transform: 

R ( q ) =  (4Wre/q) I p(z)  e x p ( i q z ) d z  , 
- - o o  

where q = (4rr/A) sin 0 = (q)z. 
In practice, this expression is valid as soon as the 

reflectivity is small, i.e. when the angle of incidence 
is large compared with the critical angle for total 
external reflection 0c, given by sin Oc = (28) 1/2 ( 1 -  8 
is the mean index of the system). 

~ X . r a y  i -~ 

mulMayer film ~ I q 

/ K i substrate 

Fig. 1. Scattering geometry of reflection experiments. The scatter- 
ing vector q is perpendicular to the layers so that the experiments 
give only the profile along Oz. 
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Multiplying by q4 and integrating by parts, one 
obtains 

i i q4R(q)=(4~rre) 2 I [ d o ( z ) / d z ] e x p ( i q z ) d z  (1) 
- o o  

This expression shows that electron density 
gradients are responsible for the reflectivity of the 
system. In multilayers deposited on a substrate, these 
gradients come, on the one hand, from the differences 
of electron density between the air and the multilayer 
and between the multilayer and the substrate, and, 
on the other hand, from the modulations of the 
density inside the multilayer (the structure). 

By separating the contributions of the structure and 
the interfaces, (1) can be cast in the form 

q4R(q)=(47rre)21K(q)+S(q)[ 2, (2) 

where K(q)  is the term due to the reflections from 
the interfaces and S(q) is the structure term. Since 
K(q)  and S(q) are complex, 

q4R(q) = (47rre)2{Ig (q)l 2 + IS(q)[  2 

+ 21g(q)l IS(q)l cos [~s(q)-c#r(q)]}.  

This expression shows that, because of the inter- 
ference term, the phase information ¢s(q) is not lost 
provided K(q)  [i.e. I g ( q ) l  and ~r (q) ]  is known. We 
shall examine this point presently. 

2.2. Description of surface reflected waves 

K(q)  has been defined as the Fourier transform of 
the density gradients due to the interfaces. Thus, it 
is the amplitude reflected by a homogeneous film and 
alone would yield an interference system known as 
Kiessig fringes, which are simply equal-inclination 
fringes for X-rays. If the interfaces are perfectly 
smooth, the expression for K(q)  is (with the origin 
taken at the air/film interface) 

K (q) = ( PF - -  PA) -Jr- ( PS - -  PF ) exp (iql), 

where l is the total thickness of the film, and PF, PS, 
PA are the mean electron densities in the film, the 
substrate and air, respectively. Since PA is small com- 
pared with PF and Ps, we shall neglect it in the 
following. It is convenient to factor out exp (iql/2), 
amounting to a change of origin 

K (q) = [ PF exp (--iql/2) + (Ps -- PF) exp (+ iql/2)] 

xexp( iq l /2)] .  (3) 

The phase evolution of the term in brackets 
depends on the relative heights of the two electron 
density gradients. A plot of the phase of this 
expression for different ratios r=pF/(pS--PF) is 
shown in Fig. 2. If PF-~ P S -  PF, the contrast of the 
fringes is 1 and the phase evolution is simply a change 
in sign occurring when the amplitude of K is 0. When 
p F T ~ P S - - P F ,  the phase evolution becomes con- 

tinuous. If the interfaces are rough, dp /dz  no longer 
reduces to two delta functions, and the contrast r will 
generally vary with q. The phase determination 
remains easy, however, since a measure of the ampli- 
tude of the fringes permits the location on the phase 
curve (for instance, the nth maximum corresponds 
to a phase equal to nvr). 

It is not necessary to observe the interference 
between the two boundaries of the film to have a 
reference for the phase. One reflected beam is 
sufficient; moreover, a two-beam reference is not 
always available. In the next section we shall consider 
experimental examples where one beam is much 
stronger than the other. In some cases this is because 
the index of the film is close to that of the substrate, 
and hence there is no density gradient at this interface. 
In other cases, the roughness of one interface is much 
larger than the other and the amplitude of the corre- 
sponding reflection vanishes rapidly (Gaussian 
Debye-Waller  damping factor). 

2.3. Interface with the structure 

For a multilayer including N identical layers of 
thickness d, the term S(q) in (2) is related to the 
structure factor F(q) through the relation 

where 

S(q) _ exp ( i N q d ) -  1 

Hence 

exp (iqd) - 1 
F(q) exp( iqd/2) ,  (4) 

÷~/2 
F ( q ) =  [dp ( z ) / d z ]exp ( iq z )d z .  

- d / 2  

sin ( Nqd / 2 ) 
S(q) = F( q) exp ( iqNd/2).  

sin (qd/2) 

/ 
I I I 

n 2 n  ql12 

Fig. 2. Evolution of the phase of Kiessig fringes as a function of 
q for different values of the ratio r=PF/(Ps--PF). The solid 
line is for r = 1, the dashed line for r = 0.5, and the dotted line 
is a variable contrast for r = 1 with two different roughnesses 
(20 and 5 A). The semicontinuous line is for r = 0. 
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This expression is the same as that for the intensity 
diffracted by an optical grating. The factor 
exp ( i N q d / 2 )  is an arbitrary phase factor depending 
on the origin that is chosen. Since l =  Nd, the two 
exponential phase factors e x p ( i q l / 2 )  in (3) and 
e x p ( i N q d / 2 )  in (4) are identical and may be 
dropped. It should be noted that the term 
sin ( N q d / 2 ) / s i n  (qd /2 )  accounting for the finite size 
changes sign at the same rate as the Kiessig fringes. 
This term gives rise to Bragg peaks when sin ( q d / 2 )  = 
0 (i.e. when q d / 2  = n'rr) but also to (N - 2 )  secondary 
maxima. The phase of the structure factor F(q)  varies 
much more slowly and can be assumed to be constant 
over an interval `4q--- 1/Nd. 

Hence it is possible to extract the amplitude and 
the phase of F from a standard regression technique 
with two parameters. If we denote by Ri the reflec- 
tivities measured at wavevectors qi (assumed to be 
close to q at which the amplitude and the phase of 
F are to be determined), we can write (2) in the form 

where 

with. 

D i = 0  

D , = E q a R , / ( 4 ~ r e ) 2 ] - l s , F +  K(q,)l 2 

S i - -  
sin (Nq,d/2)  

sin (q,d / 2)  " 

The values of the amplitude and the phase of F 
(or, in an equivalent way, of the real and imaginary 
parts of F, xr  and YF) are obtained by minimizing 
the sum of the D2: 

 (zoO:o 

 ( o0:o 

}-'. s~ (s~xl: + x, ) 
i 

x [ (SiXF + Xi ) 2 + ( Si YF + Y, ) 2 ] = 0 

E Si (Si YF -I- Yi ) 
i 

x [(SiXF + Xi)2(s, yF + Yi)2] = 0 

where 

and 

2 q4R,/(47rr~)2 r i ~- 

x, = Re [ K (q,) ] 

y , = I m [ K ( q , ) ] .  

This system has to be solved numerically since it 
involves non-linear equations for xF and YF. 
However, since each equation is quadratic in one of 
the unknowns, an analytic expression for YF as a 
function of xF may be derived and the resolution 
reduces to finding the root of an equation with one 
unknown. Roughly, the amplitude is given by the 
height of the peak and the phase by its shape and 
that of its neighbouring secondary maxima. 

It should be pointed out that the phase determina- 
tion will be accurate only if the structure and interface 
terms are of the same order of magnitude. The relative 
strength of these two terms depends on the number 
(N)  of layers and on the contrast of the modulation 
defining the structure (Ap). If we assume the width 
of the external interfaces and of the modulation inside 
the layer to be the same, equality will be achieved if 
(Ap )N- . -pF .  Currently this is true for a few tens of 
layers. Since the amplitude ofsin ( N q d / 2 ) / s i n  ( q d / 2 )  
varies by a factor of -37r /2 ,  5 r r / 2 , . . .  between the 
main peak and the first, s econd , . . ,  subsidiary 
maxima, one can use either the main Bragg peak or 
the neighbouring subsidiary maxima to analyse the 
phase with optimum accuracy. 

Fig. 3 displays a reflectivity curve calculated from 
the index profile shown in the inset. The values of 
the indices used in this profile are standard data so 
that such a profile could be constructed with currently 
available techniques (such as sputtering). The only 
unrealistic point is the zero roughness for the inter- 
faces, but this does not change the result funda- 
mentally. We shall discuss this point later on. This 
figure shows clearly the evolution of shape of the 
interference pattern due to the phase. Of course, this 
corresponds to an ideal case but we shall see that the 
experimental curves display similar features. In par- 
ticular, the hollow feature due to destructive interfer- 
ence between the surface-reflected beam and the 
structure-diffracted beam is visible on several experi- 
mental patterns. 

For the sake of clarity, this example illustrates a 
case with a single surface-reflected beam (at the 
air/film interface). When Kiessig fringes are present, 
the interference structure is somewhat more compli- 
cated but usually one can model the fringes separately 
using parts of the curve where the internal structure 
of the film plays a minor role (far from main Bragg 
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Fig. 3. Calculation of the reflectivity (b) corresponding to the 
index profile shown in (a). Note the evolution of the shape of 
the interference features around the Bragg peaks which allows 
phase determinations. 
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peaks). The phase determination is then done in a 
similar way. 

3. Experiments 

In this section we shall describe several results 
obtained on different kinds of multilayers which allow 
a review of most of the cases mentioned in the 
previous section. 

3.1. Experimental device 

The reflectivity curves were taken using a four- 
circle diffractometer. A sketch of the geometry of this 
apparatus is presented in Fig. 4. The set up (made of 
elements commercially available from Micro- 
Controle ®, Evry, France) is rather versatile and has 
extensive capabilities. This diffractometer was de- 
signed to allow reflectivity measurements but also 
other kinds of experiments such as surface diffraction 
(Marra, Eisenberger & Cho, 1979) or grazing- 
incidence fluorescence (Brunel, 1986). For reflectivity 
experiments, ~ and ~ angles (respectively rotation 
of the sample about an axis perpendicular to the 
surface and rotation of the detector arm about a 
horizontal axis perpendicular to the centre of diffrac- 
tometer-detector direction OD) are kept to zero 
whereas to (the rotation of the detector D) is set at 
20 (0 is the incident angle). The goniometric head 
(rl and r2) and the translation (z) are used to position 
the sample surface at the centre O of the diffrac- 
tometer, parallel to the beam sheet when 0 = 0. 

The device was used in these experiments with a 
conventional 1.5 kW copper sealed-tube source. The 
1.54 ~ Cu Kal  line is selected using a (200) LiF plane 
monochromator. The beam is collimated by a diver- 
gence slit So. Most of the beam path is maintained 
under vacuum to reduce background (air) scattering. 
Reflectivities down to 10 -8 have been measured. 

3.2. Sample preparation 

Two different techniques have been used to pro- 
duce samples for testing the feasibility of the method. 

3.2.1. Langmuir-Btodgett method. Tfiis technique 
is at present undergoing renewed interest since it is 
believed that this kind of system may have applica- 
tions in technologies ranging from microelectronics 
to integrated optics. The method has been described 
in several papers (e.g. Agarwal, 1988) and we shall 
only recall here that it allows the fabrication of 
organic films by successive deposition onto a sub- 
strate of a floating monolayer. In the standard de- 
position mode, the amphiphilic molecules (i.e. those 
constituted of a hydrophobic aliphatic tail and a 
hydrophilic polar head) lie in a tail-to-tail head-to- 
head configuration so that the basic period is the 
bilayer (Fig. 5). It should be emphasized that the 
lamellar structure results directly from the molecular 
arrangement, and, therefore, the quality of the struc- 
ture is usually equivalent to that of bulk crystals. On 
account of this high quality, these layers are ideally 
suited for testing our results. 

The LB samples we have investigated are standard 
behenic (docosanoic) acid multilayers. Owing to the 
very simple shape of the molecule, the structural 
problem is here easily overcome. However, systems 
are available, including, for example, alternating 
layers of two different kinds of molecules, that may 
present much more difficult structure problems. 

3.2.2. Sputtered multilayers. Since the structure 
realizable with the LB technique depends mainly on 
the molecules available, it is not well adapted for 
tuning a structure to the exact required features. This 
is why we turned to other fabrication techniques 
allowing continuous changes in the structural param- 
eters. 

Other samples were prepared using a sputtering 
technique (hot-filament magnetically enhanced triode 
sputtering) in an apparatus equipped with four mov- 
ing targets. The multilayers were evaporated under 
0.4 Pa argon base pressure. The thickness of the layers 
was controlled by means of a previous calibration 
using transmittance measurements and electron 

S d 

X'RAY 

BEAM 

UNIT 1 

Fig. 4. Geometry of the four-circle dittractometer used for reflec- 
tivity experiments. The plane of incidence is horizontal whereas 
the beam sheet is vertical. The angles ~ and ~ are kept to 0 and 
to =20. 

SUBSTRATE 

Fig. 5. Stacking ofthe layers in the standard LB deposition process. 
The basic period is the bilayer. 
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microscopy. The evaporation speed was approxi- 
mately 3-3 ,~ s -1 for Ni and 0-42 A s -1 for C. 

The substrate was a silicon single-crystal wafer 5 cm 
in diameter cut parallel to the (100) plane. 

The samples were characterized in a first step by 
conventional transmission electron microscopy on a 
thin wedge of the sample (Lep~tre, Rasigni, Rivoira, 
Philip & Metois, 1985; Lep&re, Rivoira, Philip & 
Rasigni, 1984). This technique makes possible a quick 
determination of the profile, and a control on the 
periodicity and quality of the sample. It cannot give 
accurately the profile of the interfaces and the 
individual layer thicknesses. 

3.3. Reflectivity experiments 

3.3.1. One density gradient. The mean density of 
LB films is, as for most organic materials, slightly less 
than 1 g c m  -3. As the density of silicon is 2-3 g c m  -3, 

the two index gradients limiting the film will be 
approximately identical. Kiessig fringes are therefore 
easily observable on these samples. On some samples, 
however, the roughness of the air/film interface is 
very important because of the accumulation of defects 
in the last layer during the transfer (Allain, Benattar, 
Rieutord & Robin, 1987). The contrast of the fringes 
thus decreases very rapidly and for high q values only 
one reflected beam is important. For example at q = 
0-209/~-~ (which corresponds to the second-Bragg- 
peak position) the damping of the reflectivity due to 
a 5 A roughness is 0.55 whereas it is 1.5 x 10 -4 for a 
20 A roughness. 

Fig. 6 shows the interference structure around the 
second Bragg peak for a 27-layer behenic acid multi- 
layer sample corresponding to this case. The interfer- 
ence effects are similar to those of the calculation of 
Fig. 3, with a dip and a hump originating respectively 
in destructive and constructive interference before 
and after the Bragg peak. 

Here, the phase, taken relative to the film/substrate 
interface, is found to be 0. This is in agreement with 
the fact that the structure within the unit cell is cen- 
trosymmetric with a symmetry centre located on the 
interface. The phase problem reduces therefore to a 
sign problem. Concerning the structure of the LB 
layers, the inset to Fig. 6 shows the profile within the 
unit cell as deduced from the entire reflectivity curve. 
For instance, the positive sign found for the structure 
factor at the second-Bragg-peak location indicates 
that the area 1 of the hump in the electron density 
due to polar heads is larger than the area 2 of the 
dip due to interchain gap. The amplitude of the inter- 
ference yields the difference between the two areas. 

The reflectivity of a second sample for which only 
one interface has an important scattering power is 
shown in Fig. 7. The sample is a sputtered Ni/C 
multilayer. Here, the index of sputtered carbon (3--  
7-4x 10 -6 for Cu Ka) is close to that of silicon (7-6x 
10 -6 ) so that there is no density gradient between the 
multilayer and the substrate. Moreover, the presence 
of the reflected beam at the air/film interface is hardly 
evidenced due to the very strong structural modula- 
tion coming from the large nickel index. The ratio of 
structural intensity to surface intensity is of the order 
of 10. Although a direct phase determination is hardly 
possible, we can get around this problem by noting 
that, here again, the structure is centrosymmetric 
(each layer is surrounded by two identical layers of 
the other material). Thus, the phase problem reduces 
to a sign determination. Then we can take advantage 
of the fact that we have a continuous reflectivity curve 
to follow the evolution of this sign. Since the evolution 
of the structure factor F(q) is continuous with q, the 
change of sign must correspond to a value of q where 
F(q) -- 0, and this point can be detected. For instance 
the zero of the F(q) function is easily observed on 
the experimental curve shown in Fig. 8 at q =  
0.36 ,~-~. It is of course not possible to exclude the 

1 
i 

AA 
.18 .20 .22 

Fig. 6. Experimental reflectivity near the 002 Bragg-peak location 
(full circles) taken on LB 27-layer sample. The long-dashed line 
is the surface-refected intensity taken from the best fit of the 
whole reflectivity curve. The corresponding index profile within 
the unit cell is shown in the inset. The roughnesses of the air/film 
and film/substrate interfaces are 20 and 5/~ respectively. 

q4Rtq) 
(A'4) ~ 
9,,16 

o *O0 ZIM 

10 50 O{mratll 20 30 40 

Fig. 7. Reflectivity of an Ni /C  sputtered multilayer (full line). The 
inset is the index profile of the multilayer corresponding to the 
dotted curve. 
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possibility that F(q) cancels without changing sign, 
but the slope near the minimum yields complemen- 
tary evidence for the sign change. 

Concerning this sample, we deduce from the profile 
a roughness of the internal interfaces of 6/1,. This is 
slightly greater than the roughness of the silicon sub- 
strate (5.5 A typically), and it is probable that the 
multilayer coating follows the undulations of the sub- 
strate (Barbee, 1984; Varnier, Mayani, Rasigni, 
Rasigni & Llebaria, 1987). The equivalent thicknesses 
of carbon and nickel sublayers can be obtained from 
the area of the structure modulations in the profile. 
The thicknesses are found here to be 6 A for the Ni 
lamina and 56.4 A for the C lamina. It should be 
noted that the structure cannot be fitted by a simple 
step function convoluted by a Gaussian roughness. 

3.3.2. Two density gradients. The density of defects 
present in the outermost layer of LB layers may be 
reduced when slow compression rates and slow trans- 
fer rates are adopted. We found it possible to obtain 
29-layer samples of behenic acid with a roughness of 
the air/film interface of 7.6 A. Hence the beams com- 
ing from the two external interfaces have comparable 
magnitudes and the Kiessig fringes are clearly visible 
far from main Bragg peaks. The structure is still 
centrosymmetric but now up to 18 Bragg peaks are 
visible. It should be noted that the interference struc- 
ture around the first peaks indicates that the centre 
of symmetry does not lie exactly on the substrate 
interface. The gap between the interface and the struc- 
ture is probably due to the presence of an incomplete 
layer against the substrate. It is well known that the 
transfer rate (i.e. the ratio of the deposited area over 
the sample area) is usually low for the first layer and 
close to 1 for the next layers. This illustrates a supple- 
mentary interest in the method since interference is 
sensitive to small shifts of the structure with respect 
to the interfaces. Thus, slight modifications in the top 
or bottom layers may be brought into evidence. Such 
changes in the structure have been predicted by some 
models because these layers have a different environ- 
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Fig. 8. Enlarged part of Fig. 7. Reflectivity showing the cancellation 
of the structure factor F(q). 

ment from the others (Bonnerot, Chollet, Frisby & 
Hoclet, 1985). 

The large number of Bragg peaks reveals that the 
structure has very sharp modulations with a very small 
intrinsic roughness. Hence, contrary to sputtered 
multilayers, the layers do not mimic the substrate 
undulations but 'bridge' over substrate irregularities. 
This effect is due to the rigidity of the layers 
(Pomerantz & SegmiJller, 1980; Daillant, Bosio, 
Benattar & Meunier, 1989) which does not favour 
high curvatures and prevents the monolayers from 
following short-wavelength roughness of the silicon 
substrate. We found that the structure of this sample 
is the C form of crystalline behenic acid, with a 
lamellar parameter d = 48.5 ~ .  The reflectivity curve 
near the first three Bragg peaks is shown in Fig. 9. 

The second example where the two interfaces play 
similar roles is also an N i /C  sputtered multilayer but 
with a different proportion of nickel and carbon. The 
reflectivity curve is shown in Fig. 10. Since the propor- 
tion of nickel is important, the mean density of the 
film is large and there is a (negative) density gradient 
at the film/substrate interface. It may be noted 
that the interface structure near the first peak is 
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Fig. 9. Reflectivity of a LB 29-layer sample. Note the large number 
of subsidiary maxima and the excellent agreement between 
experimental points (full circles) and the curve computed using 
the profile shown in the inset (solid line). 
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Fig. 10. Reflectivity of an Ni/C multilayer (full line). The system 
is not exactly periodic. The dotted line has been computed from 
the profile shown in the inset. 



452 X-RAY PHASE DETERMINATION IN MULTILAYERS 

symmetrical with respect to the previous case; here 
there is a destructive interference between the fringes 
and the secondary maxima for 0 < 0B and a construc- 
tive one for 0 > 0B (0B denotes the angle of the Bragg 
peak). As for the previous sputtered sample, phase 
determination for peaks of higher orders is difficult 
due to the high scattering power of the modulated 
structure compared with the interfaces. Moreover, at 
higher angles, the reflectivity pattern differs from the 
usual shapes indicating that the finite-size regular 
system image is not adequate for this system. We 
found from the measurements of the positions of the 
first three principal maxima (after corrections to 
account for refraction) that there are, in fact, two 
slightly different periods (dtot) in this sample, with 
different structure factors. The first period yields a 
weak second Bragg peak (because d c - 1 / 2 d t o t )  
whereas the second structure has a weak third Bragg 
peak ( d c -  1/3dtot) (dc is the thickness of the carbon 
layer). Concerning the first peak, one should note 
that, on account of dynamical effects, it is mainly 
representative of the outermost structure; at low 
angles, the beam is extinguished by the reflecting first 
layers and does not penetrate very deeply into the 
sample. A profile corresponding to the dotted line is 
shown in the inset of Fig. 10, and this calculation 
reproduces the main features of the experimental 
reflectivity. Of course, this curve results from a fit to 
the data and other profiles cannot be excluded. In 
practice, it is found that a solution compatible with 
all the data available on the sample is rather unique. 
Here again, the roughness of the C/Ni  interface is 
- 5 / ~ .  The results obtained by transmission electron 
microscopy are in qualitative agreement with the 
reflectivity results. They indicate that the thickness of 
each layer may also fluctuate with respect to its mean 
value. This effect, which is small, however, is 
analogous to a static Debye-Waller factor and is 
included in the roughness. 

4. Concluding remarks 

We have shown that the interference between the 
surface reflections and the modulated structure 
diffraction provides information about the phase of 
the structure factor. The method is based on the fact 
that the interfaces are known and that the system is 
finite-size periodic. 

The range of application of the method is thus 
general but there are, however, restrictions due to the 
quality of surfaces and interfaces, and to the number 
of layers. 

The quality of surfaces and interfaces is very impor- 
tant since roughness yields an additional damping 
that prevents the observation of high-angle diffraction 
signals which are necessary if detailed information is 
required on the structure. Producing sharp interfaces 

is also a preoccupation concerning other physical 
properties. It has been the object of considerable 
efforts in the control of fabrication of these systems, 
but it seems that, at least for some fabrication proces- 
ses, the presence of a residual roughness may not be 
completely avoidable. For example, metal structures 
appear to suffer more from interdiffusion between 
layers than do semiconductor structures. MBE seems 
to be particularly well suited to produce multilayers 
with extremely sharp interfaces (Esaki, 1985).. 

Interference is easily observed if finite-size effects 
are well resolved, i.e. if the resolution Aq,< 1 / N d .  
Here the resolution is given by the width of the 
divergence slits. Use of a crystal reflection together 
with a high-flux source may allow two orders of 
magnitude to be gained. In fact, the real limitation 
deals with the contrast of the interference pattern, 
since the amplitude of the signal scattered by the 
structure increases as a linear function of N whereas 
the surface reflections are constant, with regard to 
this problem, semiconductor multilayers seem, once 
again, to be well suited since the electron density 
modulation within the unit cells is usually weak. 
Optimum contrast for these layers would be reached 
for N - 1 0 0  layers ( -103/~) ,  which is the thickness 
of most practical samples. 

We thank A. Braslau for a careful reading of the 
manuscript and G. Rasigni for helpful comments. 
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Abstract 

A compact approximate formula is presented for the 
joint distribution p ( E ~ , . . . ,  Era) of m structure fac- 
tors for an equal-atom structure in the space group 
P1. The formula is based on the peculiar behaviour 
at infinity of suitable approximations of the charac- 
teristic function of p ( E 1 , . . . ,  Era). The case 
(El, E2)= (E2h, Eu) is considered for values Ugh, 
Un <-0-45. The conditional probability P÷(E2h Eh) 

that is obtained with the above method is compared 
with the tangent formula of Cochran & Woolfson 
[Acta Cryst. (1955), 8, 1-12]. 

1. Introduction 

Let us consider m normalized structure factors 

N / 2  

Eh~ = 2 N  -1/2 ~, cos (27rhk.Xj) ( k =  1 , 2 , . . . ,  m) 
j=l  

for the space group P1 and a unit cell containing N 
equal atoms. We shall suppose that Xl, x2, • • •, xn 
(n = N / 2 )  are n independent random vectors ranging 
uniformly over the unit cell and we denote by 
p(E1, E 2 , . . . ,  E~) thejoint  probability density of the 
m random variables Ek (=Eh~); we use the notation A 
Eh to denote Eh but considered as a random 
variable. For phase determination we are primarily 
interested in a good approximation of 
exp (½ Ek E2k)p( E~, E2, . . . , Era) rather than 
p(EI, EL,..., Era). It has been indicated by Brosius 
(1987) that a Gram-Charl ier  series expansion of 
p ( E I , E 2 , . . . , E m )  is a poor approximation to 
exp (½ ~,k E2k)p( E~, " " " , E,,,) for moderately high ]E 
values. A way to cope with this problem was 
to develop log p ( E ~ , . . . , E ~ )  according to an 
asymptotic series expansion (e.g. Karle & Hauptman,  
1953). This is believed to work fine for moderately 
high E values and not too high m. A serious annoy- 
ance of the latter method is that it will be practically 

0108-7673/89/070453-04503.00 

impossible to calculate the error of truncating 
l o g p ( E 1 , . . . ,  Era) at some order, whereas it should 
in principle be possible to do it for the Gram-Char l ier  
expansion o f p ( E l , . . . ,  Era) [the case m -- 1 is treated 
by Brosius (1988)]. Furthermore, the formal 
expansion of log p ( E ~ , . . . ,  Era) will hide some basic 
forms in it; to be more precise, it has been shown by 
Heinerman, Krabbendam & Kroon (1977) that 
log p ( E I , .  • . ,  Era) contains a Kar le-Hauptman deter- 
minant at least if one considers l o g p ( E ] , . . . ,  Era) to 
order N -~. But if one inspects the terms of order 
(NN1/2)  -l  it is also clear that something else is in 
play, the influence of which might become greater 
for larger m. Another example is given by the well 
known Cochran & Woolfson (1955) formula that 
gives the conditional probability of EEh given the 
value Eh. In their formula the expression ½EEh(E 2 -  
1)N -1/2 appears. Clearly, the part (1 /2NI /2)E2hE 2 
has something to do with the Harker-Kasper  
inequality U2<-½(l+ U2h) (Harker & Kasper, 1948). 
But where the term - (1 /2N~/2)Eeh  comes from 
remains a mystery. 

Recently, the search for the functional form and 
for a better approximation of p(E~, E 2 , . . . ,  Era) has 
regained interest (e.g. Wilson, 1981, 1983, 1986, 1987; 
Shmueli & Weiss, 1985; Shmueli & Wilson, 1981). 
Our approach differs from approaches like that of 
Shmueli, Weiss, Kiefer & Wilson (1984) in that we 
present a modification of the usual asymptotic 
development. 

2. The formula 

p(EI, E2,..., Era) 

=(2"n')-m/2{det[°rO(~l, ~ 2 , - - ' ,  ~m)]} -1/2 

× H exp ( - -Ek~k)Io(2~k/N1/2)  N/2 
k=l 

X p ( ~ I ,  ~ 2 , ' - - ,  ~ m ) N / 2 ~ N (  ~ I ,  . . . , ~?m) 
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